INDIAN SCHOOL MUSCAT

HALF YEARLY EXAMINATION

SEPTEMBER 2019

SET C

CLASS XII

Marking Scheme – SUBJECT [THEORY]

Q.NO.	Answers	Marks (with split up)
1.	a	•
2.	С	
3.	d	
4.	d	
5.	d	
6.	a	
7.	a	
8.	b	
9.	b	
10.	c	
11.	d	
12.	d	
13.	b	
14.	d	
15.	b	
16.	c	
17.	a	

18.	a	
10.	a	
19.	Inversely	
20.	Lorentz force	
20.	Lorentz Torce	
21.	Derivation of expression for drift velocity of free electrons in a metallic conductor.	2
22.	For stable equilibrium $\theta_1 = 0^0$	
	For unstable equilibrium $\theta_2 = 180^0$	
	$W = pE (\cos \theta_1 - \cos \theta_2)$	
	$= pE (\cos 0^0 - \cos 180^0)$	
	=2pE	2
23.	$E_{net} = 10-4 = 6 \text{ V}$	
	I = 6/6 = 1A	1
	For charging $V = E + Ir$	
	= 4 + 1x1 = 5V	1
	OR	
	$E=(E_1 r_2 + E_2 r_1)/r_1 + r_2$	
	(15 02 2 0 02)/02 02	
	$= (1.5 \times 0.3 + 2 \times 0.2) / 0.2 + 0.3$ $= 1.7 \text{ V}$	1
	- 1.7 V	1
	$r = r_1 r_2 / (r_1 + r_2)$	
	(0	
	$=(0.2 \times 0.3)/(0.2 + 0.3)$	
	$=0.12 \Omega$	1
		_
24.	Using Gauss's Theorem $\oint E \cdot ds = \frac{q(T)}{\varepsilon_0}$	
	Electric flux through sphere S_1 , $\phi_1 = \frac{2(q)}{\varepsilon_0}$	
	Electric flux through sphere S_2 , $\phi = \frac{(2Q + 4Q)}{\varepsilon_0} = \frac{6Q}{\varepsilon_0}$	
	v v	
	$\frac{2Q}{\epsilon_0}$	1
	Ratio $\frac{\phi_1}{\phi} = \frac{\frac{2Q}{\epsilon_0}}{\frac{6Q}{6Q}} = \frac{1}{3}$	1
	ϵ_0	
	If a medium of dielectric constant $K(=\epsilon_r)$ is filled in the sphere S_1 , electric flux through	1
	sphere, $\phi_1' = \frac{2Q}{\varepsilon_r \varepsilon_0} = \frac{2Q}{K\varepsilon_0}$	1
25.	$V = \sqrt{3} H$	
	$\tan\theta = V/H$	1
	$\theta = 60^{\circ}$	1

26.	Derivation- current leads the voltage in phase by $\pi/2$ in an a.c. circuit containing an ideal capacitor.	2
27.	Diagram	1/2
21.	Derivation of magnetic field in the interior of the solenoid.	11/2
	OR	172
	Diagram	1/2
	Derivation of magnetic field in the interior of the toroid.	$1\frac{72}{11/2}$
20	Derivation of magnetic field in the interior of the toroid.	-
28.		1
	(a) Capacitor	
	(b) Curve A – Power	1
	Curve B - Voltage	
	Curve C – Current	
	(c) $X_C = 1/\omega C = 1/2\pi fC$	
	Graph between X _C and f	1
29.	(i) Derivation of torque experience by dipole in uniform electric field	
	Diagram	1/2
	Derivation	11/2
	(ii) Resulting motion is combination of translational and rotational motion.	1
	OR	
	(i) Definition of torque experience by dipole in uniform electric field	1/2 1/2
	Torque in vector form.	
	(ii) Stable equilibrium $\theta = 0^0$ and diagram, $\tau = 0$	1/2 1/2
	Unstable equilibrium $\theta = 180^{\circ}$ and diagram, $\tau = 0$	1/2 1/2
30.	Charge on shell A , $q_A = 4\pi a^2 \sigma$	/2 /2
30.	Charge on shell B , $q_B = -4\pi b^2 \sigma$	
	Charge of shell C , $q_C = 4\pi c^2 \sigma$	
	Potential of shell A: Any point on the shell A lies inside the shells B and C.	
	$V_A = \frac{1}{4\pi\epsilon_0} \left[\frac{q_A}{a} + \frac{q_B}{b} + \frac{q_C}{C} \right]$	
	$=\frac{1}{4\pi\varepsilon_0}\left[\frac{4\pi a^2\sigma}{a}-\frac{4\pi b^2\sigma}{b}+\frac{4\pi c^2\sigma}{c}\right]$	
		1
	$=\frac{\alpha}{\varepsilon_0}(a-b+c)$	
	Any point on B lies outside the shell A and inside the shell C. Potential of shell B,	
	$V_B = \frac{1}{4\pi\epsilon_0} \left[\frac{q_A}{b} + \frac{q_B}{b} + \frac{q_C}{c} \right]$	
	4.00 E 0 0 1	
	$=\frac{1}{4\pi\varepsilon_0}\left[\frac{4\pi a^2\sigma}{b}-\frac{4\pi b^2\sigma}{b}+\frac{4\pi c^2\sigma}{c}\right]=\frac{\sigma}{\varepsilon_0}\left[\frac{a^2}{b}-b+c\right]$	
	Any point on shell C lies outside the shells A and B. Therefore, potential of shell C.	
	$V_C = \frac{1}{4\pi\epsilon_0} \left[\frac{q_A}{c} + \frac{q_B}{b} + \frac{q_C}{c} \right]$	
	$=\frac{1}{4\pi\varepsilon_0}\left[\frac{4\pi a^2\sigma}{c}-\frac{4\pi b^2\sigma}{c}+\frac{4\pi c^2\sigma}{c}\right]$	
	$\sigma \begin{bmatrix} a^2 & b^2 \end{bmatrix}$	1
	$=\frac{\sigma}{\varepsilon_0}\left[\frac{a^2}{c}-\frac{b^2}{c}+c\right]$	
	Now, we have	
	$V_A = V_C$	
	$\frac{\sigma}{\varepsilon_0}(a-b+c) = \frac{\sigma}{\varepsilon_0}\left(\frac{a^2}{c} - \frac{b^2}{c} + c\right)$	
		1
	$a-b=\frac{(a-b)(a+b)}{c}$	
	or $a+b=c$	

31.	Potentiometer:	
	Circuit diagram	1/2
	Principle	1/2
	Method for to compare the emfs of the two cells.	2
	OR	
	Meter bridge:	
	Circuit diagram	1/2
	Principle	1/2
	Determination the unknown resistance of a given wire	$\frac{72}{2}$
	<u> </u>	2
32.	Difference between diamagnetic and ferromagnetic materials in respect of their	1,1,1
	(i) intensity of magnetization (ii) behavior in non uniform magnetic field and	
	(iii) susceptibility	
33.	(i) Given $V = V_0 \sin(1000t + \phi)$	
	$\omega = 1000 \text{ s}^{-1}$	
	w = 1000 3	
	Given,	
	L = 100 mH	
	$C = 2 \mu F$	
	R = 400 Ω	
	. Y. Y.	
	Phase difference ϕ = tan ⁻¹ $(rac{X_L - X_C}{R})$	
	$X_L = \omega L = 1000 \times 100 \times 10^{-3} = 100 \Omega$	1/2
	$Y_0 = \frac{1}{1} = \frac{1}{1} = 500 \Omega$	
	$X_C = \frac{1}{\omega C} = \frac{1}{1000 \times 2 \times 10^{-6}} = 500 \ \Omega$	1/2
	100 700	
	$\phi = \tan^{-1}(\frac{100-500}{400}) = \tan^{-1}(-1)$	
	400	
	ϕ = -45 $^{\circ}$ and the current is leading the voltage.	
	φ = 40° and the current to leading the voltage.	1/2
	(ii)	
	For power factor to be unity, $R = Z$	1./
		1/2
	or $X_L = X_C$	
	$\omega^2 = \frac{1}{LC}$ (C = resultant capacitance)	
	$10^6 = \frac{1}{100 \times 10^{-3} \times C}$	
	100×10 °×C	1/
	\Rightarrow C' = 10 ⁻⁵ F	1/2
	For two capacitance in parallel, resultant capacitance $C' = C + C_1$	
	$10^{-5} = 0.2 \times 10^{-5} + C_{1}$	
	$\Rightarrow C_1 = 8 \mu F$	1/2
	$\gamma = \gamma = \mu_0$.	72

34.	Vertical component of earth magnetic field	
	$V = B_e \sin \theta$ $V = 1800 \text{km/h} = 500 \text{ m/s}$	1
	Induced emf	
	$\varepsilon = Vvl = (B_e \sin \theta) vl$	_
	$= (5 \times 10^{-4} \times 0.5) \times 500 \times 25 = 3.1 \text{ V}$	2
35.	(i) Definition mutual inductance and its SI unit.	1,1/2
	(ii) Derivation of mutual induction between of two long co-axial solenoids of same	21/
	length wound one over the other. $M = (\mu_0 N_1 N_2 \pi r^2)/L$ Any two factors on which mutual inductance depend.	2½ ½ ½
	Any two factors on which mutual inductance depend.	72 72
	OR	
	(i) Definition self inductance and its SI unit.	1,1/2
	(ii) Derivation of expression self induction of long solenoid. Any two factors on which self inductance depend.	2½
36.	(i) Derivatyion of PE stored per unit volume $u_e = \frac{1}{2} \epsilon_0 E^2$	¹ / ₂ ¹ / ₂ 3
30.	(1) Derivatyion of TE stored per unit volume de - /2 e0E	3
	(ii)	
	$C_s = 2/3 C$	
	$C_P = 3C$	
	${}^{1}\!\!/_{2} C_{s} V_{s}^{2} = {}^{1}\!\!/_{2} C_{p} V_{p}$ $V_{p} / V_{s} = \sqrt{2/3}$	
	$V_p / V_s = \sqrt{2/3}$	
	OR	2
	OK	
	(i) Definition of capacitance & derivation of $C_0 = \varepsilon_0 A/d$	
	(ii)	
	Capacitance of a capacitor without dielectric is given by:	
	$C_o = rac{arepsilon_o A}{d} \; \ldots \ldots \left(\mathrm{i} ight)$	
	Capacitance of capacitor when its plates are partly filled with dielectric of thickness t and of same area as the plates is	1/2
	$C = \frac{\varepsilon_o A}{d - t \left(1 - \frac{1}{\nu}\right)}$.21/2
	\	
	Here, $t = \frac{3d}{4}$	
	$C = rac{arepsilon_o A}{d - rac{3d}{4} \left(1 - rac{1}{K} ight)} = rac{arepsilon_o A}{dK + 3d} = rac{arepsilon_o A(4K)}{dK + 3d}$	
	$=rac{arepsilon_o A(4K)}{d(K+3)} = rac{4K}{(K+3)} imes rac{arepsilon_o A}{d}$	
	Therefore, the ratio of the capacitance with dielectric inside it to its capacitance without the dielectric is	
	$rac{C_o}{C} = rac{rac{4K}{(K+3)} imes rac{arepsilon_o A}{d}}{rac{arepsilon_o A}{L}} = rac{4K}{(K+3)}$	
	7	

		2
37.	Moving coil galvanometer:	
	Diagram	1/2
	Principle	1/2
	working	11/2
	Function of uniform radial magnetic field	1/2
	Function of soft iron core	
	Definition of (i) current sensitivity and (ii) voltage sensitivity of a galvanometer.	1/2 1/2
	OR	
	Cyclotron:	
	Diagram	1/2
	Principle	1/2
	working	1
	Show that the period of a revolution of an ion is independent of its speed or radius of the orbit	2
	Any two uses of Cyclotron	1/2 1/2